Matemàtiques i més...

  • El teorema de Rouché-Fröbenius
    22 de novembre de 2020 No hi ha comentaris Sigui un sistema de $m$ equacions lineals amb $n$ incògnites $$\left\{\begin{aligned}a_{11}x_1&+a_{12}x_2&+\cdots &+a_{1n}x_n&=b_1\\a_{21}x_1&+a_{22}x_2&+\cdots &+a_{2n}x_n&=b_2\\&\vdots&\ddots&&\vdots\\a_{m1}x_1&+a_{m2}x_2&+\cdots &+a_{mn}x_n&=b_m\end{aligned}\right.$$ que en forma matricial s'escriu de la forma $$\underbrace{\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\end{pmatrix}}_{M}\cdot \underbrace{\begin{pmatrix}x_1\\ x_2\\ \vdots\\ x_n\end{pmatrix}}_X=\underbrace{\begin{pmatrix}b_1\\ b_2\\ \vdots\\ b_m\end{pmatrix}}_N$$$$M\cdot X=N$$ Anomenarem la matriu de coeficients a la matriu $M$. Anomenarem la matriu ampliada a la matriu $M^*$ que és la matriu

    Read More
  • Problema sobre matriu inversa
    5 de novembre de 2020 No hi ha comentaris Considereu les matrius: $$A=\begin{pmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{pmatrix}\qquad B=\begin{pmatrix}1&1&1\\0&2&2\\0&0&3\end{pmatrix}$$ Discutiu per a quins valors del paràmetre real $k$ la matriu $A$ té matriu inversa. Una matriu A té matriu inversa si el seu determinants és diferent de 0. Calculem el determinants de A: $$|A|=\begin{vmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{vmatrix}=2+2k-2k-2k^2+2-2=-2k^2+2$$ Igualem a 0 aquest determinant i resolem: $$-2k^2+2=0~;\\ k^2=1~;\\ k=\pm1$$ Després, la matriu $A$ té

    Read More
  • Càlcul de Rang d’una matriu
    23 d'octubre de 2020 No hi ha comentaris Determineu el rang de la matriu $A$ segons els valors de $a$. $$A(a)=\begin{pmatrix}1&1&a+1&1\\a&0&0&2\\0&a&2&0\end{pmatrix}$$ Calculem el rang d'aquesta matriu utilitzant determinants. Comencem amb les columnes $1$, $2$ i $4$: $$\begin{vmatrix}1&1&1\\a&0&2\\0&a&0\end{vmatrix}=a^2-2a=a(a-2)$$ determinant que s'anul·la amb $a = 0$ i $a = 2$, després: Si a≠0 y a≠2, el rang de A és 3.Si a=0 tenim $$A = \begin{pmatrix}1&1&1&1\\1&0&0&2\\0&1&2&0\end{pmatrix}$$ Vegem el seu rang calculant el determinant format

    Read More