Etiqueta: selectivitat

Etiqueta: selectivitat

Càlcul de Rang d’una matriu
23 d'octubre de 2020 General Oscar Alex Fernandez Mora

Determineu el rang de la matriu $A$ segons els valors de $a$. $$A(a)=\begin{pmatrix}1&1&a+1&1\\a&0&0&2\\0&a&2&0\end{pmatrix}$$ Calculem el rang d’aquesta matriu utilitzant determinants. Comencem amb les columnes $1$, $2$ i $4$: $$\begin{vmatrix}1&1&1\\a&0&2\\0&a&0\end{vmatrix}=a^2-2a=a(a-2)$$ determinant que s’anul·la amb $a = 0$ i $a = 2$, després: Si a≠0 y a≠2, el rang de A és 3. Si a=0 tenim $$A = \begin{pmatrix}1&1&1&1\\1&0&0&2\\0&1&2&0\end{pmatrix}$$ Vegem el seu rang calculant el determinant

Read More
Sistema d’equacions
23 d'octubre de 2020 General Oscar Alex Fernandez Mora

Per tant, obtenim: $x = \displaystyle\frac{\Delta_x}{\Delta}= \frac{4}{-1}= -4$ $y =\displaystyle\frac{\Delta_y}{\Delta}=\frac{-6}{-1}=6$ $z = \displaystyle\frac{\Delta_z}{\Delta}=\frac{-1}{-1}=1$

Read More
Examen Selectivitat Matemàtiques II 1 de juliol 2020
23 de juliol de 2020 General Oscar Alex Fernandez Mora

Calculau les dimensions d’una capsa amb les dues tapes de base quadrangular de volum $64$ metres cúbics de superfície mínima. Comprovau que la solució obtinguda és un mínim. Consideri las rectes $$r \equiv \frac{x-1}{2}=\frac{y+1}{m}=z \qquad \quad s \equiv \left\{x+nz = -2 \atop y -z = -3\right.$$ Troba els valors de $m$ i $n$ per als

Read More
Examen de matemàtiques CCSS 30 de juny de 2020
30 de juny de 2020 General Oscar Alex Fernandez Mora

Un institut té tres partides pressupostàries: llibres, material d’oficina i mobles. El pressupost per a mobles d’aquest institut és cinc vegades la suma del de llibres més el del material d’oficina. El pressupost per a llibres és el triple del de material d’oficina. La suma del pressupost per a mobles i material d’oficina és $7$

Read More
Problema 1 examen de matemàtiques II 26 juny de 2020
29 de juny de 2020 General Oscar Alex Fernandez Mora

Discuteix el sistema pels diferents valors de $\beta$ Com que la matriu del sistema és quadrada d’ordre $3$, els valors del paràmetre que fan que el sistema no sigui compatible determinat són aquells que anul·len el seu determinant.$$\begin{vmatrix}1&3&-\beta\\ \:\:2&\beta-5&1\\ \:\:4&\beta-1&-3\end{vmatrix}=0 \longrightarrow 2\beta^2-11\beta+18=0\longrightarrow\beta=2;\ \beta = 9$$ Els valors que fan que $rang M=3$ són, evidentment, $\beta

Read More
Examen de matemàtiques II 26 de juny de 2020
26 de juny de 2020 General Oscar Alex Fernandez Mora

Considera el següent sistema d’equacions $$\left.\begin{array}{ccc}x+3y-\beta z & = & -3 \\2x+(\beta-5)y+z & = & 4\beta+2 \\4x+(\beta-1)y-3z & = & 4\end{array}\right\}$$ Discuteix el sistema pels diferents valors de $\beta$ Hi ha algun valor de $\beta$ per al qual $x=1$, $y=–3$, $z=–1$ sigui l’única solució del sistema? Resol el sistema per al cas o casos en

Read More
Examen de matemàtiques CCSS 18 de juny de 2020
18 de juny de 2020 General Oscar Alex Fernandez Mora

Una empresa fabrica tres models de televisors, que anomenarem A, B, i C. El model A necessita passar dues hores a l’unitat de muntatge; el model B, tres i el model C, una. El model A ha de passar una hora a l’unitat d’acabat i el model B, dues i el model C, tres hores.

Read More
Resolució d’un sistema d’equacions mitjançant la matriu inversa
17 de juny de 2020 General Oscar Alex Fernandez Mora

Troba la solució del sistema lineal següent: \begin{cases} 2x+y-z=3 \\ x-y+z=1 \\ 3x+y=4 \end{cases} Primer de tot expressarem la matriu i matriu ampliada del sistema: $$A=\begin{pmatrix}2 & 1 & -1\\1 & -1 & 1\\3 & 1 & 0\end{pmatrix}\quadMA=\begin{pmatrix}2 & 1 & -1 & 3\\1 & -1 & 1 & 1\\3 & 1 & 0 &

Read More
Càlcul de l’àrea entre dues funcions
17 de juny de 2020 General Oscar Alex Fernandez Mora

Calcula l’àrea compresa entre les funcions $f(x)=x^2$ i la funció $g(x)=x$. Primer ens caldrà trobar els punts de tall de les dues funcions. Ens caldrà resoldre l’equació: $$x^2=x \rightarrow x(x-1)=0\rightarrow x=0; x=1$$Fixeu-vos que podem interpretar l’àrea com la resta de dues integrals definides: $$A_{regió}=\left|\int_{0}^{1} x dx\right|-\left|\int_{0}^{1} x^2 dx\right|=\left|\left[\frac{x^2}{2}\right]{0}^{1}\right|-\left|\left[\frac{x^3}{3}\right]{0}^{1}\right|=\frac{1}{6}$$

Read More
Continuïtat i derivabilitat d’una funció a trossos
14 de juny de 2020 General Oscar Alex Fernandez Mora

Digues si la funció a trossos $$f(x)=\begin{cases} 2x^2-3x-1 \mbox{ si } x \le -1 \\4x+1 \mbox{ si } -1 < x < 2 \\9 \mbox{ si } x \ge 2\end{cases}$$és: Derivable en $x=-1$, $x=0$ i $x=2$ És contínua en aquests punts Anem a veure si és derivable en aquests punts. Calcularem la derivada a partir

Read More