Categoria: General

Categoria: General

Problema de geometria de l’espai
15 de febrer de 2021 General Oscar Alex Fernandez Mora

Siguin $r$ i $s$ les rectes de $R^3$ d’equacions: $$r:x+5=y-5=\displaystyle\frac{z-3}{2}$$ $$s:\displaystyle\frac{x-3}{2}=\displaystyle\frac{y-2}{3}=\displaystyle\frac{z+1}{-1}$$ Estudieu el paral·lelisme i la perpendicularitat entre les rectes $r$ i $s$ Els vectors directors de les rectes $r$ i $s$ són: $v_r=(1,1,2)$ i $v_s=(2,3,-1)$. Els vectors $v_r$ i $v_s$ no són proporcionals, ja que un no és múltiple de l’altre i per tant

Read More
Sistemes homegenis
25 de novembre de 2020 General Oscar Alex Fernandez Mora

Es considera el sistema d’equacions: $$\left\{\begin{array}{rl}x+y-(1-a^2)z&=0\\2x+4y+6z&=0\\2x+5y+z&=0\end{array}\right.$$ Calcula raonadament els valors del paràmetre a perquè el sistema tingui solucions diferents de la solució trivial $(0,0,0)$. Es tracta d’un sistema homogeni. Perquè aquest sistema tingui solucions diferents de la trivial, el sistema ha de ser compatible indeterminat.Discutim el sistema utilitzant el teorema de Rouché-Frobenius. Escrivim el sistema

Read More
El teorema de Rouché-Fröbenius
22 de novembre de 2020 General Oscar Alex Fernandez Mora

Sigui un sistema de $m$ equacions lineals amb $n$ incògnites $$\left\{\begin{aligned}a_{11}x_1&+a_{12}x_2&+\cdots &+a_{1n}x_n&=b_1\\a_{21}x_1&+a_{22}x_2&+\cdots &+a_{2n}x_n&=b_2\\&\vdots&\ddots&&\vdots\\a_{m1}x_1&+a_{m2}x_2&+\cdots &+a_{mn}x_n&=b_m\end{aligned}\right.$$ que en forma matricial s’escriu de la forma $$\underbrace{\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\end{pmatrix}}_{M}\cdot \underbrace{\begin{pmatrix}x_1\\ x_2\\ \vdots\\ x_n\end{pmatrix}}_X=\underbrace{\begin{pmatrix}b_1\\ b_2\\ \vdots\\ b_m\end{pmatrix}}_N$$$$M\cdot X=N$$ Anomenarem la matriu de coeficients a la matriu $M$. Anomenarem la matriu ampliada a la matriu $M^*$ que és la matriu

Read More
Problema sobre matriu inversa
5 de novembre de 2020 General Oscar Alex Fernandez Mora

Considereu les matrius: $$A=\begin{pmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{pmatrix}\qquad B=\begin{pmatrix}1&1&1\\0&2&2\\0&0&3\end{pmatrix}$$ Discutiu per a quins valors del paràmetre real $k$ la matriu $A$ té matriu inversa. Una matriu A té matriu inversa si el seu determinants és diferent de 0. Calculem el determinants de A: $$|A|=\begin{vmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{vmatrix}=2+2k-2k-2k^2+2-2=-2k^2+2$$ Igualem a 0 aquest determinant i resolem: $$-2k^2+2=0~;\\ k^2=1~;\\ k=\pm1$$ Després, la matriu $A$ té

Read More
Càlcul de Rang d’una matriu
23 d'octubre de 2020 General Oscar Alex Fernandez Mora

Determineu el rang de la matriu $A$ segons els valors de $a$. $$A(a)=\begin{pmatrix}1&1&a+1&1\\a&0&0&2\\0&a&2&0\end{pmatrix}$$ Calculem el rang d’aquesta matriu utilitzant determinants. Comencem amb les columnes $1$, $2$ i $4$: $$\begin{vmatrix}1&1&1\\a&0&2\\0&a&0\end{vmatrix}=a^2-2a=a(a-2)$$ determinant que s’anul·la amb $a = 0$ i $a = 2$, després: Si a≠0 y a≠2, el rang de A és 3. Si a=0 tenim $$A = \begin{pmatrix}1&1&1&1\\1&0&0&2\\0&1&2&0\end{pmatrix}$$ Vegem el seu rang calculant el determinant

Read More
Sistema d’equacions
23 d'octubre de 2020 General Oscar Alex Fernandez Mora

Per tant, obtenim: $x = \displaystyle\frac{\Delta_x}{\Delta}= \frac{4}{-1}= -4$ $y =\displaystyle\frac{\Delta_y}{\Delta}=\frac{-6}{-1}=6$ $z = \displaystyle\frac{\Delta_z}{\Delta}=\frac{-1}{-1}=1$

Read More
Examen Selectivitat Matemàtiques II 1 de juliol 2020
23 de juliol de 2020 General Oscar Alex Fernandez Mora

Calculau les dimensions d’una capsa amb les dues tapes de base quadrangular de volum $64$ metres cúbics de superfície mínima. Comprovau que la solució obtinguda és un mínim. Consideri las rectes $$r \equiv \frac{x-1}{2}=\frac{y+1}{m}=z \qquad \quad s \equiv \left\{x+nz = -2 \atop y -z = -3\right.$$ Troba els valors de $m$ i $n$ per als

Read More
Problema sobre aplicació lineal
23 de juliol de 2020 General Oscar Alex Fernandez Mora

Sigui $f:R^3\rightarrow R^3$ l’aplicació lineal definida per $$f(x,y,z) = (2x, 3y, x+y+z)$$ Trobeu la matriu de f en les bases canòniques. La matriu de $f$ en les bases canòniques és:$$\begin{pmatrix}2&0&0\\ 0&3&0\\ 1&1&1\end{pmatrix}$$ Calculeu el polinomi característic de $f$ i els valors propis de $f$. El polinomi característic de $f$ és:$$q(t) = (2-t)\cdot(3-t)\cdot(1-t)$$Els valors propis de

Read More
Lleis de càlcul proposicional
16 de juliol de 2020 General Oscar Alex Fernandez Mora

Una altra manera de validar un raonament sense necessitat de construir constantment taules de veritat és utilitzar les regles d’inferència. Aquestes regles es representen mitjançant un esquema d’inferència o en forma de llei lògica i permeten d’assegurar la correcció formal d’una inferència o raonament. Així, el resultat obtingut és sempre una tautologia. Per això la

Read More
Símbols de la lògica proposicional
15 de juliol de 2020 General Oscar Alex Fernandez Mora

El llenguatge específic de la lògica proposicional conté un vocabulari en el qual és possible distingir-hi dos tipus de símbols: Símbols no lògics Variables: Són lletres llatines minúscules ($p$, $q$, $r$, $s$, $t\dots$) que representen les proposicions.Per exemple: “si véns ara, aleshores t’espero” equival a “si $p$, aleshores $q$”Tenen dos valors de veritat: vertader o

Read More